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Abstract—Despite breakthroughs in audio generation models,
their capabilities are often confined to domain-specific conditions
such as speech transcriptions and audio captions. In a real-world
scenario, however, we often need to generate audio containing
various elements such as speech, music, and sound effects with
controllable conditions, which is challenging to address using
existing audio generation systems. We present WavJourney,
a novel framework that leverages Large Language Models
(LLMs) to connect various audio models for audio creation.
WavJourney allows users to create storytelling audio content
with diverse audio elements, simply based on textual descriptions.
Specifically, given a text instruction, WavJourney first prompts
LLMs to generate an audio script that serves as a structured
semantic representation of audio elements. The audio script is
then converted into a computer program, where each line of
the program calls a task-specific audio generation model or
computational operation function. The computer program is then
executed to obtain a compositional and interpretable solution for
audio creation. Experimental results suggest that WavJourney
is capable of synthesizing realistic audio aligned with textually-
described semantic, spatial and temporal conditions, achieving
state-of-the-art results on text-to-audio generation benchmarks.
Additionally, we introduce a new multi-genre story benchmark.
Subjective evaluations demonstrate the potential of WavJourney
in crafting engaging storytelling audio content from text. We
further demonstrate that WavJourney can facilitate human-
machine co-creation in multi-round dialogues. To foster future
research, the code for implementing the proposed method is made
available at: https://github.com/Audio-AGI/WavJourney

Index Terms—audio generation, audio synthesis, large lan-
guage models (LLMs), computational creativity

I. INTRODUCTION

The emerging field of multi-modal artificial intelligence
(AI), a realm where visual, auditory, and textual data converge,
opens up fascinating possibilities in our daily life. As a
powerful intermediary, natural language shows great potential
to facilitate communication across multiple sensory domains.
Large Language Models (LLMs), which are designed to un-
derstand and interact with human language, have demonstrated
remarkable capabilities in acting as agents [1], [2], engaging
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with a broad range of AI models to address various multi-
modal challenges. While LLMs are regarded as effective multi-
modal task solvers, an open question remains: can these
models also become creators of engaging, realistic multimedia
content?

Multimedia content creation involves digital media produc-
tion in multiple forms, such as text, images, and audio. As a
vital element of multimedia, audio not only provides context
and conveys emotions but also fosters immersive experiences,
guiding auditory perception and engagement. In this work, we
address a novel problem of compositional audio creation with
language instructions, which aims to automatically generate
audio content based on textual descriptions using various
elements such as speech, music, and sound effects. Prior
works have leveraged generative models to synthesize audio
with task-specific scripts, such as speech transcriptions [3],
music descriptions [4], and audio captions [5]. However, these
models are often limited when generating audio beyond such
conditions, falling short of the demand for audio creation in
real-world scenarios. In light of the recent advances in LLMs,
it is intuitive to ask: can we leverage the potential of LLMs and
audio generation models for compositional audio creation?

Compositional audio creation presents inherent challenges
due to the complexities of synthesizing intricate and dynamic
audio content. Harnessing LLMs for compositional audio cre-
ation presents a range of challenges: 1) Contextual comprehen-
sion and design: using LLMs for compositional audio creation
requires them not only to comprehend textual instructions but
also to design audio storylines featuring speech, music, and
sound effects. How to expand the capabilities of LLMs in text
generation to audio storytelling is a challenge; 2) Audio pro-
duction and composition: unlike vision and language data, an
audio signal is characterized by the dynamic spatio-temporal
relationships among its constituent audio elements. Leveraging
LLMs for integrating various audio generation models to pro-
duce sound elements and further compose them into a harmo-
nious whole presents additional challenges; 3) Interactive and
interpretable creation: Establishing an interpretable pipeline
to facilitate human engagement is critical in automated audio
production, as it enhances creative control and adaptability,
fostering human-machine collaboration. However, designing
such an interactive and interpretable creation pipeline with
LLMs remains an ongoing challenge.

We introduce WavJourney, a novel framework that leverages
LLMs for compositional audio creation guided by language
instructions. Specifically, WavJourney first prompts LLMs to
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generate a structured script, which includes the text descrip-
tions of speech, music, and sound effects while considering
their spatio-temporal relationship. To handle intricate auditory
scenes, WavJourney decomposes them into individual acoustic
elements along with their acoustic layout. The audio script is
then fed into a designed script compiler, converting it into
a computer program. Each line of program code invokes a
task-specific audio generation model, audio I/O functions, or
computational operation functions. The computer program is
subsequently executed to generate and compose the audio
content. The overview of WavJourney is shown in Figure 1,
where we illustrate the idea using an example about science
fiction storytelling.

WavJourney offers multiple benefits for audio creation: as
it is 1) Contextually adaptive, by leveraging the understanding
capability and generalizable knowledge of LLMs, WavJourney
can design audio storytelling scripts with diverse sound ele-
ments, and intricate acoustic relationships; 2) Compositional,
benefiting from its composable design, WavJourney can auto-
matically decompose complex auditory scenes into indepen-
dent sound elements, enabling the integration of various task-
specific audio generation models to controllably create audio
content. Our approach differs from previous methods [6],
[7], where the end-to-end model often fails to generate au-
dio aligned with complex textual descriptions; 3) Training-
free, as WavJourney eliminates the need for training audio
generation models or fine-tuning LLMs, making it resource-
efficient; 4) Interactive, the interpretability offered by both the
audio script and computer program facilitates audio producers
with varying expertise to engage with WavJourney, fostering
human-machine co-creation in real-world audio production.
WavJourney advances audio creation beyond traditional task-
specific conditions and opens up new avenues for computa-
tional creativity in audio production.

Our contributions are summarized as follows:
• We present WavJourney, a framework that leverages

LLMs for compositional audio creation. Given textual
instructions, WavJourney can create audio storytelling
content encompassing speech, music, and sound effects,
without the need for additional training. To the best of
our knowledge, WavJourney is the first LLM-based agent
for audio creation.

• We evaluate WavJourney on AudioCaps [5] and
Clotho [8]. The results show that WavJourney outper-
forms previous state-of-the-art methods in both subjective
and objective evaluations. The perceptual quality of the
audio synthesized by WavJourney is even higher than
the ground truth audio from AudioCaps in subjective
tests, suggesting its promising performance to produce
realistic and contextually relevant audio from texts. We
also conducted extensive subjective ablation studies to
show the effectiveness of the compositional approach for
text-to-audio generation.

• We present a multi-genre storytelling benchmark along
with various subjective metrics such as engagement, cre-
ativity and emotional resonance. Subjective evaluations
show that WavJourney can craft audio storytelling with
positive scores in subjective metrics and outperforms

state-of-the-art text-to-audio synthesis models.
• We demonstrate that WavJourney enables interactive au-

dio creation in multi-round dialogues, facilitating human-
machine co-creation in audio production applications.

II. RELATED WORK

A. Audio Creation

The process of audio creation is complex and dynamic,
involving various components such as content design, music
composition, audio engineering, and audio synthesis. Tradi-
tional methods have relied on human-involved approaches
such as field recording [9], Foley art [10], and music compo-
sition [11] co-existing with digital signal processing modules
[12]. In recent years, the intersection of AI and audio cre-
ation has gained significant attention. AI-driven approaches,
particularly generative models, have demonstrated promising
results in synthesizing audio content for speech [13]–[15],
music [4], [16], sound effects [6], [7], [17], [18], or specific
types of sounds, such as footsteps or violin [19], [20]. Existing
audio generation models primarily focus on synthesizing audio
content based on a particular type of task condition, such
as speech transcriptions [3], music descriptions [4], or audio
captions [5]. However, they are not designed to generate com-
positional audio containing speech, music, and sound effects
with controllable textual conditions. Leveraging data-driven
approaches for addressing compositional audio creation is
resource-intensive. It requires the collection of a sophisticated
audio dataset with corresponding text annotations, as well as
training for effective audio models.

B. Large Language Models (LLMs)

LLMs such as GPT-3 [21], Llama [22], and ChatGPT [23]
have advanced the research area of natural language processing
(NLP) due to their capability to generate human-like text.
Recently, LLMs have emerged as agents, demonstrating their
capability to address intricate AI tasks by integrating a range
of domain-specific AI models. ViperGPT [24] and VisProg [2]
have demonstrated the significant promise of LLMs in decom-
posing complex vision-language tasks such as visual reasoning
and text-to-image generation. These methods can generate a
computer program (e.g., Python code) for each decomposed
sub-task, which is executed sequentially to offer an explainable
task solution. HuggingGPT [1] leverages ChatGPT [23] as
a controller to manage existing AI models in HuggingFace
[25] for solving AI tasks in the domain of language, vision,
and speech. Similar to HuggingGPT, AudioGPT [26] connects
multiple audio foundation models to solve tasks with speech,
music, sound understanding, and generation in multi-round
dialogues. In the context of existing research, considerable
efforts have been dedicated to leveraging the capabilities of
LLMs to solve multi-modal tasks. However, it is a relatively
unexplored area to exploit the potential of LLMs for audio
content creation.

III. WAVJOURNEY

WavJourney is a collaborative system composed of an
audio script writer utilizing LLMs, a script compiler and



3

Fig. 1. The overview of the WavJourney. The LLM is first prompted to be an audio script writer. As a conceptual representation of audio, the audio script
provides the user with an interactive and interpretable interface. The audio script is then compiled using a script compiler and executed as a computer
program. The execution process is powered by a set of expert audio generation models. The example illustrates a Sci-Fi audio storytelling creation given the
text instruction: “Generate an audio Science Fiction: Galactic nomad trades stories from different universes at cosmic crossroads.”

a set of audio generation models such as zero-shot text-
to-speech1, text-to-music, and text-to-audio generation mod-
els. The overall architecture is illustrated in Figure 1. The
pipeline of WavJourney can be deconstructed into two major
steps: 1) Audio script generation: given a text instruction,
the audio script writer initiates the process by warping the
input instruction with specific prompts. Then, the LLM is
engaged with these prompts, which directs it to generate an
audio script conforming to the structured format. 2) Script
compiling and program execution: Subsequently, the script
compiler transcribes the audio scripts into a computer program.
The computer program is further executed by calling the APIs
of expert audio generation models to create audio content. We
describe the details of these two steps in the following sections.

A. Audio Script Generation

The first challenge in harnessing LLMs for audio content
creation lies in generating an audio narrative script based on

1Zero-shot text-to-speech (TTS) refers to the ability of a TTS system to
generate speech in a voice that has not been explicitly trained on, given an
unseen voice preset as a condition for zero-shot synthesis.

the input text instructions that often only contain concep-
tual and abstract descriptions. Recognizing that LLMs have
internalized generalizable text knowledge, we utilize LLMs
to expand input text instructions into audio scripts, including
detailed descriptions of decomposed acoustic contexts such as
speech, music, and sound effects. To handle spatio-temporal
acoustic relationships, we prompt LLMs to output the audio
script in a structured format composed of a list of JSON nodes.
Each JSON node symbolizes an audio element, including
acoustic attributes (e.g., duration and volume). In this way,
a complex auditory scene can be decomposed into a series of
single acoustic components. Then, we can create the desired
audio content by leveraging diverse domain-specific audio
generation models. We introduce these details in the following
paragraphs.

1) Format of Audio Script: We define three types of audio
elements: speech, music, and sound effects. For each audio
element, there are two types of layouts: foreground and
background. Foreground audio components are concatenated
sequentially, i.e. no overlap with each other. Background
audio on the other hand can only be played along with some
foreground elements, i.e. they cannot be played independently
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(overlaps of background audio are allowed). Sound effects and
music can either be foreground or background, while speech
can only be foreground. The concepts above are reflected in
the format of a list consisting of a series of JSON nodes,
with each node embodying a unique audio component. Each
node is supplemented with a textual description of its content.
To enhance the auditory experience, each audio component
is assigned a volume attribute. Sound effects and musical
elements are furnished with an additional attribute pertaining
to length, facilitating control over their duration. For speech
components, a character attribute is assigned. This attribute
enables the synthesis of personalized voices in the later stage,
thereby enhancing the narrative thread of audio storytelling.
This layered structures and details of audio elements contribute
to creating rich and dynamic audio content. We observe that
the outlined format is able to cover a wide variety of audi-
tory scenarios and its simplified list-like structure facilitates
the understanding of LLMs for complex auditory scenes. A
visualized example of an audio script is shown in Figure 1.

2) Personalized Voice Parsing: Advances in zero-shot TTS
have facilitated the synthesis of personalized speech based on
specific voice presets. In WavJourney, we leverage zero-shot
TTS to amplify the narrative depth of audio storytelling, utiliz-
ing a set of voice presets tailored for diverse scenarios. More
specifically, each voice preset is provided with descriptions
of its characteristics and appropriate application scenarios. In
subsequent stages, we can leverage LLM to allocate a suitable
voice from the preset to each character outlined in the audio
script. We utilize a simple prompt design to facilitate the voice
allocation process, as discussed in the next paragraph.

3) Prompt Engineering: To generate rich and formatted
audio scripts from given text instructions, we wrap the text
instructions within a prompt template. The prompt template
contains the specifications of each JSON node type, including
audio type, layout, and attributes. The prompt template is
shown in Table I. The instructions listed in the prompt template
facilitate formatting the audio script generated by LLMs. In the
next step, following the receipt of the generated audio scripts,
we instruct the LLM to parse the characters outlined in each
speech node into personalized speech presets. The prompt used
for voice parsing is shown in Table II. The audio script with
parsed voice mapping is further processed through the script
compiler, generating the code for subsequent stages.

B. Script Compiling and Program Execution

WavJourney employs a script compiler to automatically
transcribe the audio script into a computer program. The script
compiler works with a list of JSON nodes, where each node
represents an audio element that is categorized either as fore-
ground or background, along with their attributes (e.g., vol-
ume, duration). The implementation of the script compiler will
be described in Section VI. Each line of compiled code in the
program invokes a task-specific audio generation model, audio
I/O function, or computational operation function (e.g., mix,
concatenate). The program is subsequently executed, resulting
in an explainable solution for compositional audio creation.
In contrast to previous studies that utilize LLMs to generate

Prompt # Audio Script Writing

I want you to act as an audio script writer. I’ll give you an instruction
which is a general idea and you will make it an audio script in List
format containing a series of JSON nodes.

The script must follow the rules below:

Each line represents an audio JSON node. There are three types of
audio: sound effects, music, and speech. For each audio, there are two
types of layouts: foreground and background. Fore-ground audios are
played sequentially, and background audios are sound effects or music
which are played while the foreground audio is being played.

Sound effects can be foreground or background. For sound effects,
you must provide its layout, volume (dB, LUFS standard), length
(in seconds), and detailed description of the sound effect. Exam-
ple: {“audio type”: “sound effect”, “layout”: “foreground”, “vol”: -35,
“len”: 2, “desc”: “Airport beeping sound”}

Music can be foreground or background. For music, you must provide
its layout, volume (dB, LUFS standard), length (in seconds), and
detailed description of the music. Example: {“audio type”: “music”,
“layout”: “foreground”, “vol”: -35, “len”: 10, “desc”: “Up-lifting news-
room music”}

Speech can only be foreground. For speech, you must provide the
character, volume (dB, LUFS standard), and the character’s line. You do
not need to specify the length of the speech. Example: {“audio type”:
“speech”, “layout”: “foreground”, “character”:“”News Anchor”, “vol”:
-15, “text”: “Good evening, this is BBC News”}

For background sound effects, you must specify the id of the background
sound effect, and you must specify the beginning and the end of a back-
ground sound effect in separate lines, hence you do not need to specify
the length of the audio. Example: {“audio type”: “sound effect”, “lay-
out”: “background”, “id”:1, “action”: “begin”, “vol”: -35, “desc”: ”Air-
port ambiance”} ... {“audio type”: “sound effect”, “layout”: “back-
ground”, “id”:1, “action”: ”end”}

For background music, it’s the same as background sound effects.

The output format must be a list of the root node containing all the
audio JSON nodes.

TABLE I
PROMPT TEMPLATE USED FOR GENERATING AUDIO SCRIPTS.

code [2], [24], WavJourney prompts LLMs to generate textual
audio scripts, which foster improved comprehension for audio
producers without programming expertise. In addition, the
process of crafting a computer program to compose intricate
auditory scenes requires an elaborate series of procedures
within the code to manage audio length calculations and
the mixing or concatenation operations of audio clips. Given
the unpredictability of LLMs [1], there are occasions when
they may fail to adhere to specified instructions during the
generation process. By introducing a script compiler, we can
mitigate the potential exceptions in the program workflow
arising from the instability of LLMs, thereby reducing this
uncertainty during inference.

IV. AUDIO STORYTELLING BENCHMARK

In real-world audio production applications, people often
begin with abstract or simple concepts rather than detailed
ideas for each component (e.g., speech, music, audio). This
is a common yet challenging scenario that existing audio
generative models struggle to handle effectively. With recent
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Prompt # Personalized Voice Parsing

Given an audio script in JSON format, for each character that appeared
in the “character” attribute, map the character to a “voice type” based
on their lines and the “voice types” features. Each character must be
mapped to a unique voice type, and each “voice type” must be one of
the following:

- Female1: a normal female adult voice, British accent
- Female2: a normal female adult voice, American accent
- ...
- Male1: a normal male adult voice, British accent
- Male2: a normal male adult voice, American accent

Output should be in the format of CSV, like:
“‘
[character 1], [voice type 1]
[character 2], [voice type 2]
...
”’

TABLE II
PROMPT TEMPLATE USED FOR VOICE PARSING.

advances in LLMs, we now have the potential to automate
this task. Motivated by this, we introduce a multi-genre story
benchmark with five storytelling genres in real-world contexts:
education, radio play, romantic drama, science fiction (Sci-Fi),
and travel exploration. For each genre, we prompted ChatGPT
[23] to generate ten story titles, each ranging from 15 to 25
words. This diverse set of generated stories is designed to
be a benchmark for evaluating WavJourney’s capabilities in
audio storytelling creation. The story examples can be found
in Table III. Inspired by expert-driven metrics design process
[27], we further design a subjective evaluation protocol for
comprehensively assessing the generated audio storytelling
using five metrics: engaging, creativity, relevance, emotional
resonance, and pace & tempo. Each metric is scored from 1 to
5, and the details of each metric are described in Table IV. Our
subjective evaluation protocol is developed with input from
audio and product experts, allows for an assessment that goes
beyond traditional evaluations (e.g., Mean Opinion Score [28])
to consider narrative complexity, music and sound design, and
vocal delivery in a coherent and comprehensive manner.

V. EXPERIMENTAL SETUP

A. Model Configuration

We utilize the GPT-4 model [23] as the LLMs for WavJour-
ney. For text-to-music and text-to-audio generation, we adopt
the publicly available state-of-the-art models MusicGen [16]
and AudioGen [29], respectively. As for text-to-speech syn-
thesis, we leverage the Bark [30] model, which can generate
realistic speech and is able to match the tone, pitch, emotion,
and prosody of a given voice preset. We use four voice presets2

drawn from Bark’s official voice presets3 as the WavJourney’s
default voice settings. To enhance the quality of synthesized
speech, we apply the speech restoration model VoiceFixer
[31] after the Bark model. We use 16 kHz sampling rate

2Male voices: ‘v2/en speaker 1’, ‘v2/en speaker 6’; Female voices:
‘v2/en speaker 9’, ‘v2/de speaker 3’.

3https://github.com/suno-ai/bark/tree/main/bark/assets/prompts

for processing audio signals. We implement the computer
program in the Python language. For the volume control of
the generated audio content, we adopt the Loudness Unit Full
Scale (LUFS) standard [32].

B. Text-to-Audio Generation Evaluation

1) Datasets: We assess the performance of WavJourney
in text-to-audio generation on AudioCaps [5] and Clotho
v2 [8] datasets. AudioCaps is the largest publicly available
audio captioning dataset contains 50 725 10-second audio
clips sourced in AudioSet. As the AudioSet is sourced from
YouTube, the quality of audio clips in AudioCaps is diverse.
AudioCaps is divided into three splits: training, validation, and
testing sets. The audio clips are annotated by humans with
natural language descriptions through the Amazon Mechanical
Turk crowd-sourced platform. Each audio clip in the training
sets has a single human-annotated caption, while each clip in
the validation and test set has five ground-truth captions. We
retrieved AudioCaps based on the AudioSet we downloaded.
Our retrieved AudioCaps dataset contains 49 274/49 837 audio
clips in the training set, 494/495 clips in the validation set, and
929/975 clips in the test set. Clotho is an audio captioning
dataset that contains high-quality sound clips obtained from
the FreeSound platform4. Each audio clip in Clotho has been
annotated via the Amazon Mechanical Turk crowd-sourced
platform. Particular attention was paid to fostering diversity
in the captions during the annotation process. In this work,
we use Clotho v2 which was released for Task 6 of the
DCASE 2021 Challenge5. Clotho v2 contains 3839, 1045, and
1045 audio clips for the development, validation, and test split
respectively. Each audio clip is annotated with five captions.
Audio clips are of 15 to 30 seconds in duration and captions
are 8 to 20 words long.

2) Baseline: For comparison, we use five publicly available
state-of-the-art text-to-audio generation models as the baseline
systems: AudioGen [29], AudioLDM [6], AudioLDM2 [33],
Make-An-Audio [7], and Tango [34]. We use the official
implementations of these baseline systems to synthesize au-
dio from textual descriptions drawn from AudioCaps and
Clotho test sets. For the AudioCaps dataset, which exclusively
comprises 10-second audio clips, we maintain consistency by
setting all our results to this same duration. In contrast, the
Clotho evaluation set contains audio clips of varying lengths.
To ensure fairness, we randomly select audio lengths ranging
from 15 to 30 seconds for Clotho, reflecting the diverse nature
of this dataset. For each audio in the AudioCaps and Clotho
test sets, we use its first textual description as the input con-
dition. As a result, for each model, we produced 929 samples
for AudioCaps and 1045 audio clips for Clotho, respectively.
All audio samples were sampled at 16 kHz for evaluation.
To control the length of WavJourney-generated audio for fair
comparison, we simply add the duration condition as a suffix
for input prompts (e.g., “the duration of generated audio must
be 10 seconds.” ).

4https://freesound.org/
5https://dcase.community/challenge2021

https://github.com/suno-ai/bark/tree/main/bark/assets/prompts
https://freesound.org/
https://dcase.community/challenge2021
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Genre Story Title Example

Education “Mathematics in Nature: Exploring Fibonacci Sequences and Golden Ratios”
Radio Play “Ella and Sean, in playful debate, as pastries crumble and cappuccinos steam”
Romantic Drama “Secrets whispered, emotions swell, two hearts navigating love’s turbulent sea”
Sci-Fi “Mars colonists find ancient alien artifacts; Earth’s history is not ours alone”
Travel Exploration “Iceland’s geysers and elves: a land where nature’s fury meets mythical tales”

TABLE III
EXAMPLES OF MULTI-GENRE AUDIO STORYTELLING BENCHMARK.

Score Engaging Creativity Relevance Emotional Resonance Pace & Tempo

1 Not at all Not at all Not at all Not at all Too Slow
2 Slightly Slightly Slightly Slightly Slightly Slow
3 Moderately Moderately Moderately Moderately Just Right
4 Very Very Very Very Slightly Fast
5 Extremely Extremely Extremely Extremely Too Fast

TABLE IV
SUBJECTIVE EVALUATION PROTOCOL FOR AUDIO STORYTELLING CREATION.

3) Objective Evaluation: In line with previous works [6],
[29], [35], we adopt the objective metrics for evaluation:
Frechet Audio Distance (FAD), Kullback-Leibler Divergence
(KL), Inception Score (IS). FAD calculates the Frechet dis-
tance between the distribution of the embedding value of
two audio groups, extracted through a pre-trained VGGish
model [36]. KL presents the similarity between the logit
distributions of two groups of audio calculated by an audio
tagging model, Patch-out Transformer [37]. IS illustrates the
variety and diversity of the target audio group. A higher IS
indicates a larger variety with vast distinction, while both KL
and FAD indicate better audio fidelity with lower scores. These
objective metrics were computed for each model across the
AudioCaps and Clotho test sets.

4) Subjective Evaluation: For subjective evaluation, follow-
ing previous work [29], we adopt the metrics: Overall Impres-
sion (OVL) and Audio and Text Relation (REL). Both OVL
and REL metrics have a Likert scale [38] between one and
five, where a larger number indicates better performance. We
also perform a preference-based subjective evaluation where
listeners compare audio files from two different systems using
the same text description, choosing the one that sounds better
considering its corresponding text condition. Furthermore, we
conduct Turing test [39] experiments, where participants were
presented with audio clips and tasked with categorizing them
as real, ambiguous, or fake. To mitigate any potential bias
that might skew listeners’ perceptions, we did not provide
textual descriptions of the audio clips in the Turing test
experiments. The motivation to conduct Turing test is to assess
whether generated audio is indistinguishable from real-world
audio in human perception. In the subjective evaluation, we
used 50 audio files, randomly sampled from the AudioCaps
and Clotho test sets, respectively. In all subjective tests, we
compare WavJourney with the baseline systems AudioLDM
and AudioGen as well as the ground truth (GT) audio.

C. Audio Storytelling Creation Evaluation

We evaluate the capability of WavJourney in audio story-
telling creation on the story benchmark using the subjective
evaluation protocol introduced in Section IV. For baselines,
we compare WavJourney with the AudioGen and AudioLDM
systems. Each generated audio storytelling content is around
30 to 60 seconds.

D. Subjective Evaluation Setup

Our subjective evaluations were carried out using the Ama-
zon Mechanical Turk6, a crowd-sourcing platform. We pro-
vided raters with detailed instructions and illustrative examples
to ensure a consistent evaluation process. To maintain the
reliability of our results, we imposed specific criteria for the
participating workers: a minimum average approval rate of
60% and a history of at least 50 approved tasks. Each audio
sample was assessed by a minimum of 10 different raters.
The final score for each system was calculated by averaging
scores across all raters and audio samples. We ensured fair
compensation for the participants, with payments aligning with
or exceeding the US minimum wage.

E. Results on Text-to-Audio Generation

1) Results on AudioCaps: WavJourney outperforms Audio-
Gen and AudioLDM systems in all subjective tests on the
AudioCaps benchmark. As shown in the left part of Table
VI, WavJourney achieves an OVL score of 3.75 and a REL
score of 3.74. Compared with AudioLDM and AudioGen,
WavJourney has 0.36 and 0.19 higher in OVL, and 0.4 and
0.22 higher in REL, respectively. WavJourney even marginally
surpasses the ground truth audio in the OVL (3.73) metric
and is on par in the REL (3.76) metric. The subjective
preference-based testing results are consistent with the OVL
and REL results, as shown in Figure 2. Specifically, against
AudioGen, WavJourney is superior in approximately 40% of

6https://requester.mturk.com/

https://requester.mturk.com/
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Model AudioCaps Clotho

FAD ↓ KL ↓ IS ↑ FAD ↓ KL ↓ IS ↑

AudioLDM 4.65 1.89 7.91 3.57 2.19 6.84
AudioLDM2 3.11 1.73 7.88 3.52 2.46 9.13
AudioGen 2.15 1.49 8.15 2.55 2.21 7.41
Tango 3.46 1.33 9.44 4.06 2.42 8.23
Make-An-Audio 3.13 1.70 8.99 4.55 2.67 8.06
WavJourney 3.38 1.53 7.94 1.75 2.18 9.15

TABLE V
PERFORMANCE COMPARISON ON AUDIOCAPS AND CLOTHO

BENCHMARKS FOR FAD, KL, AND IS METRICS. THE BEST VALUES
FROM TTA SYSTEMS ARE SHOWN IN BOLD.

Model AudioCaps Clotho

OVL ↑ REL ↑ OVL ↑ REL ↑

AudioLDM 3.39± 0.87 3.34± 0.94 3.41± 0.94 3.36± 0.97
AudioGen 3.56± 0.87 3.52± 0.92 3.41± 0.93 3.37± 0.92
WavJourney 3.75± 0.90 3.74± 0.93 3.61± 0.87 3.56± 0.93

GT 3.73± 0.84 3.76± 0.86 3.71± 0.89 3.71± 0.96

TABLE VI
PERFORMANCE COMPARISON ON AUDIOCAPS AND CLOTHO BENCHMARKS

FOR OVL AND REL SUBJECTIVE METRICS. RESULTS ARE REPORTED AS
MEAN ± STANDARD DEVIATION, WITH 95% CONFIDENCE INTERVALS

(CI95). BEST VALUES ARE IN BOLD, AND VALUES EXCEEDING GROUND
TRUTH ARE UNDERLINED.

Fig. 2. Preference-based subjective evaluation on AudioCaps. Fig. 3. Preference-based subjective evaluation on Clotho.

the cases, while AudioGen outperforms WavJourney in 27.2%
of instances. No distinguishable difference is noted in 34.7%
of the cases. When compared to AudioLDM, WavJourney
excels in roughly 48.7% of the cases, lags in about 24.4%, and
both share comparable performance in 26.9% of scenarios. The
comparison against ground truth indicates that WavJourney
surpasses in 35.6% of cases, they both match without clear
differentiation in 40%, and WavJourney is only inferior in
24.4% of the instances. Notably, WavJourney is the first audio
generation system that can exceed real-world audio perfor-
mance on the AudioCaps benchmark, suggesting its capability
to generate realistic and contextually relevant audio content
from texts. For the objective metrics, as shown in the left
part of Table V, we observed that WavJourney’s performance
is on par with AudioLDM2, Tango and Make-An-Audio,
and it slightly lags behind AudioGen - which contrasts with
our subjective assessments, where WavJourney outperformed
AudioGen and the ground truth audios in listening tests. This
discrepancy suggests that objective evaluation metrics (e.g.,
FAD) may not always effectively capture the performance
of text-to-audio generation systems. This finding aligns with
conclusions drawn in previous work [40].

2) Results on Clotho: WavJourney outperforms all baseline
TTA systems across all three objective metrics on the Clotho
benchmark, as shown in the right part of Table V. Specifically,
WavJourney achieves a FAD score of 1.75, a KL score of 2.18,
and an IS score of 9.15. The subjective evaluation results
are consistent with the objective metrics, as shown in the
right part of Table VI. AudioGen and AudioLDM demonstrate

comparable performance, achieving an OVL score of 3.41 and
a REL score of approximately 3.37. WavJourney outperforms
both by a significant margin, with an OVL score of 3.61 and
a REL score of 3.56. The performance of WavJourney and
ground truth is closely approximated, where the ground truth
audio files have high quality sourced from the Freesound plat-
form [41]. Specifically, the performance gap is merely 0.1 and
0.15 for OVL and REL metrics, respectively, demonstrating
the strong performance of our proposed system. WavJourney
achieves a new state-of-the-art on the Clotho benchmark in
terms of both objective and subjective metrics. The results
of subjective preference-based testing are shown in Figure 3.
WavJourney outperforms AudioGen in 42.8% of cases while
being outperformed in 25.6%. Compared with AudioLDM,
WavJourney leads in 44.5% of cases but lags in 26.5%. There
is no clear difference in roughly 30% of cases for both systems.
The comparison against AudioGen and AudioLDM is coherent
with the above objective and subjective evaluation results.
However, the ground truth audio has better quality than that
generated by WavJourney in a substantial 63.7% of the cases,
indicating there is potential space for improvement on the
Clotho benchmark.

3) Ablation Study: We conducted an ablation study on
the text-to-audio generation task using the AudioCaps and
Clotho datasets. Our motivation is to investigate the sources
of performance improvements, particularly those arising from
1) the introduction of a text-to-speech synthesis model, and 2)
the use of LLMs to decompose complex audio captions.

We manually checked the text captions of 50 audio clips
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Model Speech-Inclusive (46%) Non-Speech Exclusive (54%) Overall

OVL ↑ REL ↑ OVL ↑ REL ↑ OVL ↑ REL ↑

AudioLDM 3.25 3.21 3.50 3.45 3.39 3.34
AudioGen 3.53 3.57 3.57 3.47 3.56 3.52
WavJourney 3.93 3.90 3.59 3.60 3.75 3.74

Ground Truth 3.77 3.85 3.69 3.68 3.73 3.76

TABLE VII
ABLATION STUDY ON AUDIOCAPS SPEECH-INCLUSIVE AND

NON-SPEECH EXCLUSIVE SPLITS.

Model Speech-Inclusive (52%) Non-Speech Exclusive (48%) Overall

OVL ↑ REL ↑ OVL ↑ REL ↑ OVL ↑ REL ↑

AudioLDM 3.26 3.22 3.57 3.50 3.41 3.36
AudioGen 3.30 3.34 3.52 3.40 3.41 3.37
WavJourney 3.61 3.55 3.61 3.56 3.61 3.56

Ground Truth 3.60 3.67 3.81 3.75 3.71 3.71

TABLE VIII
ABLATION STUDY ON CLOTHO SPEECH-INCLUSIVE AND NON-SPEECH

EXCLUSIVE SPLITS.

Model Perceived as Real Ambiguous Perceived as Fake

AudioGen 53.0% 15.6% 31.4%
AudioLDM 47.2% 18.8% 34.0%
WavJourney 53.8% 13.4% 32.8%

Ground Truth 65.8% 15.6% 18.6%

TABLE IX
TURING TEST ON AUDIOCAPS BENCHMARK.

Model Perceived as Real Ambiguous Perceived as Fake

AudioGen 46.4% 18.8% 34.8%
AudioLDM 46.8% 17.2% 36.0%
WavJourney 54.0% 14.8% 31.2%

Ground Truth 62.2% 14.0% 23.8%

TABLE X
TURING TEST ON CLOTHO BENCHMARK.

Fig. 4. Case studies on AudioCaps benchmark.

from the AudioCaps and Clotho datasets, which were used for
subjective listening tests. These clips were then classified into
two categories: Speech-Inclusive, which includes speech and
and other sounds, and Non-Speech Exclusive, which consists of
non-speech elements only. In the case of AudioCaps, 23 (46%)
audio clips were categorized as speech-inclusive and 27 (54%)
as non-speech exclusive. For Clotho, the speech-inclusive and
non-speech exclusive categories contained 26 (52%) and 24
(48%) audio clips, respectively. We decomposed the subjective
evaluation results reported in Table VI into speech-inclusive
and non-speech exclusive splits, detailed in Tables VII and
VIII for AudioCaps and Clotho dataset, respectively.

Across both the AudioCaps and Clotho datasets, WavJour-
ney consistently outperforms AudioLDM and AudioGen in
terms of the OVL and REL metrics for both speech-
inclusive and non-Speech exclusive splits. Particularly, given
that WavJourney uses AudioGen for text-to-audio synthesis,
the improvements in performance over the AudioGen sys-
tem in the non-speech exclusive splits shows the benefits
of WavJourney’s use of LLMs to decompose complex audio
captions. Moreover, WavJourney achieved impressive results
in the speech-inclusive splits. Specifically, for AudioCaps,
WavJourney obtained an OVL score of 3.93 and a REL
score of 3.90, significantly surpassing both AudioLDM and
AudioGen. These scores even exceed the Ground Truth scores

of 3.77 and 3.85 for OVL and REL, respectively. For Clotho,
WavJourney achieved an OVL score of 3.61, which sub-
stantially outperforms AudioLDM and AudioGen and is on
par with the Ground Truth score of 3.60. We attribute this
additional improvement to the introduction of text-to-speech
synthesis model that can produce better speech component
than AudioLDM and AudioGen systems.

Here a question is raised, why does WavJourney perform
better than or on par with Ground Truth audio on speech-
inclusive data? We suggest that the improvements may come
from three aspects: 1) The use of state-of-the-art text-to-speech
synthesis models that can produce realistic and clear speech
content. 2) Some audio clips in AudioCaps or Clotho datasets
are of poor quality. As these datasets were originally designed
for audio captioning research, their audio clips may not always
yield high subjective evaluation results (e.g., audio clips in
AudioCaps sourced from noisy YouTube videos). 3) The
effective use of the contextual understanding capabilities of
LLMs. When generating complex audio that includes speech,
WavJourney can design the content of the speech related to
the context. For example, in a scenario where the audio scene
is a bustling city street, real-world recordings might include
speech content unrelated to the scene, potentially causing a
disconnect for the listener. However, WavJourney can generate
complex audio with contextually relevant speech content for
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such a scene, such as a conversation about navigating the city
or comments on city sounds. This context-aware approach
enhances the listening experience and leads to improved
results in listening tests. This potentially leads to a better
impression during the listening test, considering that in real-
world recordings, the speech content may not always be related
to the acoustic scene.

4) Turing Test: The results on the AudioCaps and Clotho
are described in Tables IX and X, respectively. WavJourney
outperforms AudioGen and AudioLDM across both Audio-
Caps and Clotho in Turing tests. Specifically, WavJourney
achieved the highest perceived-as-real rates (53.8% for Audio-
Caps and 54.0% for Clotho) and the lowest rates of being per-
ceived as fake and ambiguous. However, WavJourney did not
succeed in passing the Turing Test by matching the perceived-
as-real rate of the Ground Truth audio, which was 65.8% for
AudioCaps and 62.2% for Clotho. The good results achieved
by WavJourney show that it performs better in generating
realistic audio clips than AudioLDM and AudioGen, although
there is still a gap between synthetic and real audio as judged
by human listeners. The discrepancy between the results of
the Turing test and other subjective metrics (e.g., OVL, REL,
preference-based test) on AudioCaps may be attributed to text-
to-speech generated speech. Although this generated speech
can positively influence subjective metrics (as discussed in
Section V-E3), it may be easy to distinguish due to human’s
sensitive perception of speech.

5) Case Studies and Analysis: We randomly select two
audio clips with complex captions (e.g., more than 15 words,
containing at least three sound events) from the AudioCaps
test set. We further perform case studies to study the effec-
tiveness of WavJourney, compared with the AudioLDM and
AudioGen systems. The results and comparison are shown
in Figure 4, and synthesized audio files are available on the
project page. We manually localize each sound event in the
spectrogram using the colored line underneath per spectrogram
for visualization. AudioGen and AudioLDM fail to generate
audio that aligns with textual descriptions and often results
in unintelligible synthesized speech. WavJourney not only
successfully generates all desired audio elements, including
intelligible speech, but can also organize each audio element
in the proper temporal-spatio layout as described in the text
(e.g., two events happening simultaneously when instructed by
the word “as” or one sound is behind another when the word
“follow” appears). The compositional design offers WavJour-
ney better subjective results compared with AudioLDM and
AudioGen systems, which also suggests the capability of
WavJourney for controllable audio generation with textually-
described semantic, temporal, and spatial conditions.

F. Results on Audio Storytelling Creation
Subjective evaluation results are shown in Table XI.

WavJourney performs well in generating audio storytelling
with appropriate pacing and tempo and achieves positive
scores i.e., marginally above the moderate level for aspects
including engagement, creativity, relevance, and emotional
resonance for all genres. Compared with baselines, WavJour-
ney consistently outperforms both AudioLDM and AudioGen

across all evaluated aspects. The subjective evaluation results
demonstrate the practicality of WavJourney in real-world audio
production applications and indicate its potential in crafting
engaging audio storytelling from texts. We will release all
the synthesized audio files for future comparison. Synthesized
audio clips are available on the project page.

Model Engaging Creativity Relevance Emo. Resonance Pace & Tempo

AudioGen 2.09 2.17 2.18 2.09 2.56
AudioLDM 2.12 2.18 2.18 2.23 2.50

WavJourney 3.28 3.18 3.52 3.04 2.97

TABLE XI
SUBJECTIVE EVALUATION RESULTS ON THE PROPOSED MULTI-GENRE

AUDIO STORYTELLING BENCHMARK.

G. System-level Ablation Studies

In this section, we perform system-level ablation studies
by comparing them against other design choices. Our ex-
periments include 1) employing open-source large language
models (LLMs) such as Llama for audio script writing; and
2) using LLM (e.g., GPT-4) to generate Python code. These
comparisons aim to evaluate the effectiveness and efficiency
of the module design in WavJourney.

1) On open-source LLMs for script writing: We explored
the script writing capabilities of the open-source LLMs
Llama2-70B-Chat [42] and Llama3.1-70B-Instruct [43], cho-
sen for their accessibility and potential adaptability in diverse
text generation scenarios. We use the 50 audio storytelling
prompts introduced in Section IV for testing. We prompted
Llama2-70B-Chat and Llama3.1-70B-Instruct to generate au-
dio scripts from input text instructions and then to parse
voices based on the generated audio script and the system
voice preset. The resulting audio script and voice mapping
results were fed into the script compiler, which validated their
accuracy. We compared the Compilation Success Rate (CSR)
of Llama2-70B-Chat and Llama3.1-70B-Instruct with that of
GPT-4 used in WavJourney. We used the same prompts as
those used in WavJourney.

LLM Script Writer Compilation Success Rate

Llama2-70B-Chat 10%
Llama2-70B-Chatprocessed 54%
Llama3.1-70B-Instruct 92%

GPT-4 94%

TABLE XII
COMPILATION SUCCESS RATES FOR LLAMA2-70B-CHAT,

LLAMA3.1-70B-INSTRUCT AND GPT-4 IN AUDIO SCRIPT WRITING.

The results are presented in Table XII. The Llama2-70B-
Chat model achieved a poor CSR of 10%, largely due to
hallucinations [44], such as generating unexpected contexts
(e.g., a summary of what it does at the end). To address this,
we manually processed the outputs of Llama2-70B-Chat by
removing the hallucinated contexts. This processing improved
the CSR to 54%. However, even after processing, it still fell
short of GPT-4, which achieved a high CSR of 94%. The
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disparity in performance between Llama2-70B-Chat and GPT-
4 highlights the challenges involved in audio script writing
and suggests that an additional effort (e.g., instruction tuning
[45]) may be required. We demonstrate several errors made by
Llama2-70B-Chat and GPT-4. For Llama2-70B-Chat, the most
common failure case is the incorrect output format i.e., the
integration of JSON syntax and natural language description.
The model generated a detailed script but failed to maintain a
consistent JSON format, as seen in the inclusion of comments
like ‘[Background sound effect: Soft office ambient noise, -35
dB, end]’ within the JSON structure. This presents a difficulty
for Llama2-70B-Chat in adhering to a strict JSON format
when trying to provide descriptive audio elements. In addition,
several generated scripts have incomplete JSON structure,
lacking essential attributes (e.g., ‘character’ attribute for
speech nodes). This suggests limitations in the Llama2-70B-
Chat’s understanding of structured data formats, leading to
incomplete or incorrect outputs. For GPT-4, a few failure cases
involve using undefined audio types, such as ‘child laughter’,
which is not recognized within the pre-defined audio types.
This indicates a potential issue with the model’s understanding
of the specific constraints required for this task.

In contrast, the Llama3.1-70B-Instruct model, a state-of-
the-art member of the Llama series, demonstrated substantial
improvements, achieving a CSR of 92%, nearly on par with
GPT-4. This result demonstrates the promise of state-of-the-art
open-source LLMs, such as Llama3, in enabling WavJourney
to perform effectively in audio script writing. It is also possible
to fine-tune smaller LLM models to achieve comparable per-
formance, which can help reduce the significant computational
costs associated with larger models like Llama3-70B. We leave
this as future work.

2) On LLM-based script compiler: Previous works [2],
[24] have used LLMs to generate code aimed at addressing
complex vision-language tasks via compositional inference. In
this experiment, we implement a LLM-based script compiler
for comparison. We use the GPT-4 [23] model as the LLM-
based compiler in this ablation study. Specifically, we exper-
iment with 50 audio scripts generated by WavJourney from
the storytelling benchmark. We design a specialized prompt
template to enable a GPT4-based script compiler to parse
code from an audio script through in-context learning. The
simplified description of this prompt template is described
in Table XIV. To evaluate the reliability and efficiency, we
computed the Execution Error Rate (EER) and the Average
Compiling Time (ACT) for both the hand-crafted and GPT4-
based compilers across a set of 50 examples. Experiments were
carried out on a CPU machine equipped with an AMD EPYC
7502 32-core Processor. The practical compiling time for the
GPT4-based compiler is dependent on the on-demand request
and the length of the audio script.

The results are presented in Table XIII. The GPT4-based
compiler has a significantly higher EER of 56%, along with
an ACT of 63.16 seconds. This suggests that the GPT4-based
compiler is less efficient and stable compared to the hand-
crafted compiler, which demonstrated no execution errors and
an ACT of 0.03 seconds. The results show that our proposed
hand-crafted compiler mitigates the instability in the script

compilation and also greatly improves the inference efficiency.

Script Compiler Execution Error Rate Average Compiling Time (seconds)

Hand-crafted 0% 0.03
GPT4-based 56% 63.16

TABLE XIII
PERFORMANCE COMPARISON OF HAND-CRAFTED AND GPT4-BASED

SCRIPT COMPILERS IN TERMS OF EXECUTION ERROR RATE (EER) AND
AVERAGE COMPILING TIME (ACT).

Simplified Prompt for LLMs-based Script Compiler

I want you to act as an audio script compiler. I’ll provide you with instructions for compiling an
audio script in JSON node list format into a Python program.

[Audio Script Format Description]

[Description of the Python API Functions (TTM, TTS, TTA, MIX, CAT)]

[An Audio Script Example]

[A Compiled Python Code Example]

Instruction: compile the Python code given the audio script.

TABLE XIV
SIMPLIFIED DESCRIPTION OF THE PROMPT TEMPLATE USED FOR

GPT4-BASED SCRIPT COMPILER.

H. The Analysis of Inference Cost

WavJourney uses LLM and multiple audio generation mod-
els, which introduces an additional time cost when generating
complex audio content. To analyze the time cost, we randomly
selected 20 text captions from the AudioCaps test set and
calculated the average inference time required by WavJourney
and baseline TTA models to generate 10-second audio clips.
For WavJourney, we report the time costs associated with
script writing and audio generation. The testing was conducted
on a machine equipped with a single NVIDIA GeForce RTX
2080 Ti GPU. Note that the script writing time reflects the
API call duration to GPT-4, which hides the actual inference
time. The results are shown in Table XV. In practice, by
carefully optimizing the use of computational resources (e.g.,
parallel inference) for WavJourney, it is possible to achieve
high-quality synthetic audio generation while minimizing the
time required for inference, which we leave as future work.

Model Script Writing Time (s) Audio Generation Time (s)

AudioLDM - 6.96
AudioLDM2 - 17.64
Tango - 24.4
Make-An-Audio - 8.6
AudioGen - 23.0
WavJourney 8.1 45.3

TABLE XV
COMPARISON OF INFERENCE COSTS FOR THE WAVJOURNEY AND
AUDIOGEN SYSTEMS. DIFFUSION-BASED TEXT-TO-AUDIO (TTA)
MODELS, INCLUDING AUDIOLDM, AUDIOLDM2, TANGO, AND

MAKE-AN-AUDIO, WERE EVALUATED USING 200 INFERENCE STEPS.

VI. SCRIPT COMPILER

We describe the details of the script compiler here. The
pseudo-code of the script compiler is described in the Algo-
rithm 1. The algorithm performs the following six steps: 1)
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Initialization: The algorithm starts by initializing two lists, one
for foreground audio nodes (foregroundAudioList) and another
for background audio nodes (backgroundAudioList). It also
initializes a variable to keep track of the next foreground node
ID; 2) Node Classification: The algorithm iterates through
the root list and checks each node’s type. If the node is of
type ‘foreground’, it is added to the foregroundAudioList, and
the next foreground node ID is incremented. If the node is
marked as the beginning of a background audio segment, it
is assigned with the next foreground node ID and added to
the backgroundAudioList; 3) Foreground Audio Processing:
The compiler then creates a list to store the lengths of the
foreground audio segments. For each foreground audio node,
the corresponding audio is generated and its length calculated
and stored in the list; 4) Background Audio Processing: The
algorithm calculates the target length for the background
audio based on the foreground audio’s start and end IDs, and
then generates and calculates the length of the background
audio; 5) Audio Composition: The algorithm combines all
the foreground audio segments to create the final foreground
audio. Then, for each background audio node, it mixes the
background audio with the foreground audio, offsetting the
background audio to sync with the foreground audio segments;
6) Final Output: The resulting final audio, which is a mix of
foreground and background audio tracks, is outputted from the
script compiler.

The primary contribution of WavJourney lies in its composi-
tional approach to audio generation, while the script compiler
is a supporting component to achieve this goal. We opted for
a deterministic approach (e.g., hard-coded logic) instead of
an LLM-based solution, as it proved to be more stable and
efficient. Script compilation is primarily an engineering task
that can be implemented using techniques such as Depth-First
Search (DFS) or recursive methods. Therefore, we positioned
the script compiler in the latter part of the paper to maintain
focus on the core contributions, while including it to ensure
reproducibility.

VII. HUMAN-MACHINE CO-CREATION

The natural interface of the audio script is designed to
enable audio producers to actively engage in automated au-
dio creation. By leveraging the communication capabilities
of LLMs, WavJourney allows users to customize the audio
content through multi-round dialogues. We perform several
case studies on the AudioCaps dataset, as shown in Figure
5. Initially, WavJourney was requested to synthesize the audio
content conditioned on the provided text descriptions, followed
by dynamic changes to the audio elements through multi-
round dialogues, such as adding new audio elements (e.g.,
“add a dog barking background and a man shouting after cow
mooting”) or modifying acoustic attributes (e.g., “adjust the
goat bleating sound to 3 seconds”). Furthermore, we provide
another case study on radio play storytelling creation, with
a focus on speech content control (e.g., control the content
of the speech by topic or specific sentences and the type of
language in the multi-turn conversation), as shown in Figure 6
and 7. The successful execution of these tasks by WavJourney

Algorithm 1: Pseudo code of Script Compiler
Initialize: foregroundAudioList as an empty list,

backgroundAudioList as an empty list,
nextForegroundNodeID as 0

1 forall node in the root list do
2 if node.type is “foreground” then
3 Add node to foregroundAudioList;
4 Increment nextForegroundNodeID by 1;
5 else
6 if node.isBeginning is True then
7 Set node.beginForegroundID as

nextForegroundNodeID;
8 Add node to backgroundAudioList;
9 else

10 Set backgroundNode in
backgroundAudioList with id node.id’s
endForegroundID as
nextForegroundNodeID;

11 end
12 end
13 end

Initialize: fgAudioLengths as an empty list
14 forall foregroundAudio in foregroundAudioList do
15 Generate the audio based on foregroundAudio;
16 Calculate the generated length, append it to

fgAudioLengths;
17 end
18 Concatenate all generated foreground audio to create

finalForegroundAudio;
19 forall backgroundAudio in backgroundAudioList do
20 Calculate targetLength by using

backgroundAudio’s beginForegroundID,
endForegroundID and fgAudioLengths;

21 Generate the audio of targetLength based on
backgroundAudio;

22 Calculate the offset from the beginning of the
finalForegroundAudio using beginForegroundID
and fgAudioLengths, set as offset;

23 end
Initialize: finalAudio as finalForegroundAudio

24 forall backgroundAudio in backgroundAudioList do
25 Mix finalAudio with backgroundAudio generated

audio, with offset according to
backgroundAudio.offset;

26 end
27 Output finalAudio;

demonstrates its great promise in fostering human-machine
co-creation.

VIII. LIMITATION

Although WavJourney can create audio content with text
instructions, limitations could be observed as follows: 1)
Extensibility: WavJourney relies on structured audio scripts
to represent auditory scenes and script compilers to generate
computer programs, which is inflexible to expand its functional
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Fig. 5. An illustrative example of human-machine co-creation.

Fig. 6. Human-machine co-creation (speech content control) Fig. 7. (Continued) Human-machine co-creation (speech content control)

capabilities; 2) Artificial composition: The process of decom-
posing and re-mixing audio may result in synthetic audio
that deviates from real-world sound distributions, particularly
concerning music composition, which requires the alignment
of beats, chord progression, and melody in multiple music
tracks; 3) Efficiency: The reliance of WavJourney on LLMs
and multiple audio generation models introduces time costs
when generating complex audio content. Improving the effi-
ciency of WavJourney could facilitate its practicality for real-
world applications; 4) Dependency on model performance:
The proposed compositional framework is inherently limited
by the performance of LLMs and existing audio generation
models. In domains where these models perform poorly,
WavJourney may yield suboptimal results. Additionally, as a
cascade system, it is vulnerable to errors in earlier stages; for
instance, if the LLM fails to generate correctly formatted or
appropriate content, the final audio output will be compro-
mised.

IX. CONCLUSION

In this work, we presented WavJourney, which connects
LLMs with diverse expert audio generation models, enabling
compositional audio creation via natural language instructions.
WavJourney can schedule various expert audio generation
models to create audio content by decomposing auditory
scenes into individual audio elements with their acoustic rela-
tionships. Extensive experiments suggest that WavJourney can
generate realistic audio from captions and also demonstrate
great potential in crafting engaging audio storytelling from
the text. To the best of our knowledge, WavJourney is the first
LLM-based agent for audio creation. Our work broadens the
scope of existing AI-powered audio generation. In addition,
the compositional approach we presented for content creation
is not limited to audio but can be potentially extended to
other modalities. The future of content creation is undoubtedly
multimodal (e.g., video, text, audio), and using an end-to-end
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model presents many challenges and may not easily produce
acceptable results. WavJourney provides insights into future
research of agent-based multimodal content creation.
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